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1. SUMMARY 
 
Image fusion is important for image analysis and has important military applications such as concealed 
weapon detection and autonomous landing guidance. Image fusion problems can be classified into two 
categories. In Category-I image fusion, images obtained by sensors operating at different wavelengths 
and “viewing a common scene” simultaneously are fused. In Category-II image fusion, images collected 
by multiple homogenous and/or heterogeneous sensors mounted at different locations, “viewing different 
scenes with partial overlapping”, are fused. Category-II image fusion is of high importance for real-time 
target detection, tracking, and identification over a large terrain. Category-I image fusion has been well-
studied and many algorithms including image pyramid approaches, filter-shift-decimate fusion, discrete 
wavelet transform, and total probability density fusion have been developed. However, Category-II image 
fusion has not yet been well-studied.  

The goal of the proposed project is to investigate and evaluate the existing image fusion 
algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in 
moving target detection and tracking. The research objectives are three-fold: image fusion algorithm 
investigation, new algorithm development, and application of the proposed algorithms to moving target 
detection and classification. 

This progress report presents several algorithms for the fusion of images in video streams 
collected by heterogeneous top-down cameras.  

Two (2) faculty members, the Principle Investigator and the Co-Principle Investigator, 
and a research associate were actively involved in this research. Four (4) undergraduate students 
also participated for a short period of time. 
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2. INTRODUCTION 
 
This work employs heterogeneous cameras for large area monitoring and target detection. To 
generate the view of a large area, multiple omnidirectional cameras are often used [1] [2]. The 
work in [1] employed four omnidirectional cameras to generate the bird-view image to monitor 
the surrounding area of a track-trailer. Similarly, the work in [2] used six fisheye cameras to 
generate the panoramic image of vehicle surroundings. The common issue for ominodirectional 
and fisheye cameras is that the image quality deteriorates toward the boundary of the image, and 
that the captured images need to be dewarped into perspective images. The work in [3] employed 
four pin-hole cameras to make the bird-view image of the vehicle surroundings. In this method, 
first, image pixels of the wide-angle cameras are back-projected to the ground plane, and then 
the ground points are projected to the virtual camera. The work in [4] employed a stereo camera 
for real-time lane and obstacle detection. Both systems need to conduct camera calibration to 
calculate camera intrinsic and extrinsic parameters. The problem for these methods are (i) there 
is no robust method for camera calibration; (ii) the small error in intrinsic camera parameter 
estimation brings a great distortion to the transformed images.    
  This work achieves the fusion of images collected by top-down heterogeneous cameras 
and moving target detection from the fused images. Several image fusion techniques have been 
reported in literature [7] [8] [9] [10]. Among these methods, discrete wavelet transform (DWT) 
based fusion schemes offer several advantages over similar pyramid based fusion schemes: (a) 
DWT provides directional information while the pyramid representation does not introduce any 
spatial orientation in the decomposition process [11]; (b) in pyramid based image fusion, the 
fused images often contain blocking effects in the regions where the input images are 
significantly different. No such artifacts are observed in similar DWT based fusion results [11]; 
and (c) images generated by DWT based image fusion have better signal-to-noise ratios (SNR) 
than images generated by pyramid image fusion when the same fusion rules are used [12]. Our 
previous work that discusses the fusion of the optical and IR images by using DWT based fusion 
approach is given in [5]. The difference between the current work and [5] is as follows.  In work 
[5], both optical camera and infrared (IR) camera are mounted on a helicopter, and the camera 
lenses are parallel. The helicopter flies at high altitude so that the images from both cameras are 
bird-view images. However, in the current work, the camera lenses of optical camera and IR 
camera are not parallel, and the images from both cameras are top-down images but not bird-
view images. This makes fusion of images from heterogeneous cameras difficult. The difference 
between the current work and the ones in [3] and [4] is that the later needs camera calibration to 
find camera intrinsic and extrinsic parameters, but our approach does not need to calculate 
camera parameters. The following section will describe the proposed method in detail. Section 
2.3 describes another algorithm that makes use of Genetic Algorithms for finding optimum 
image matching parameters between IR and electro-optical (EO) images. 

The report is organized as follows: Section 3 presents the algorithms developed. The 
experimental results and performance analysis are described in Section 4. Some conclusions are 
given and future work is motivated in Section 5. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

 
3.1 Landmark-Based Algorithm Description 
 
Figure 1 shows the camera installation and their output images. Figure 1 (a) shows the positions 
of four cameras, which are numbered as Camera-1, Camera-7, Camera-8, and Camera-6. 
Camera-1 is a dome-type optical camera (Pelco Spectra IV), Camera-7 is an IR camera (Pelco 
ESPRIT), Camera-8 is a hand-held camera (Sony Handycam DCR-PC10), and Camera-6 is a 
mailbox-type optical camera (Pelco ccc1390H-6). The distance between Cameras 1 and 7 is 
19.2m, Cameras 7 and 8 is 13.4, Cameras 8 and 6 is 13.4 m, and the altitude from the ground is 
8.6m. Figure 1 (b), (c), and (d) show the output image of Camera 6, 7, and 8, respectively. The 
output images from Camera 1, 6, and 8 are the same, 640×480 color image, and the output image 
from camera 7 is 320×240 dummy-color image (R-, G-, and B-channel are the same luminance 
component). Although Camera 1, 6 and 8 are all optical cameras, their optical characteristics are 
different. Besides these differences, the images from Camera 1, 6, 7 are recorded in YUYV 
format, and the image from Camera 8 is recorded in RGB format. Therefore, the output images 
are different in color and luminance. The following explains the major components of the 
proposed algorithm: image rectification, image interpolation, image fusion, and moving target 
detection. 
 

 
Figure 1:  (a) Camera 1, 7, 8, and 6, Installed at the Top of the Building Wall; (b) Optical Image from 

Camera-6; (c) IR Image from Camera-7; (d) Optical Image from Camera-8 
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3.1.1 Image Rectification 
 
As shown in Figure 1, the images from the heterogonous cameras are distorted because the 
cameras are top-down cameras. To fuse the images from heterogeneous top-down cameras, the 
images from these cameras needs to be registered. There are many methods for image 
registration such as region-based image registration [16], contour-based image registration [17], 
and implicit similarity based registration [18]. However, these methods are applicable for aerial 
image registration or microscopy medical image registration, in which camera lenses are parallel. 
They are not applicable for registering top-down images, where camera lenses are not parallel, 
and regions and contours are greatly distorted. In this work, we introduce rectification-based 
method for registration. Image rectification is a transformation process used to project multiple 
images onto a common image surface. It is used to correct a distorted image into a standard 
coordinate system. It can be done by calculating camera intrinsic and extrinsic parameters. 
However this method is computationally heavy, and is not robust to camera parameter estimation 
error. In our work, we employ the projective transformation [6]. Let m' = (x', y', w')T denote the 
distorted pixel position, and m = (x, y, 1)T the distortion free pixel position, then the relation 
between m' and m is shown by m' = Hm, that is,  
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where w' is the scale factor. The projective transformation matrix H (or homography matrix) has 
8 degree of freedom. As shown in Figure 2, assume the vertex coordinates of a square ABCD is 
A(x1,y1), B(x2,y2), C(x3,y3), and D(x4,y4), respectively, their transformed coordinates are A'(x'1,y'1), 
B'(x'2,y'2), C'(x'3,y'3), and D'(x'4,y'4), correspondingly, the 8 parameters of the homography matrix 
H, from the square ABCD to the quadrilateral A'B'C'D', is determined by solving the following 
equations, 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′−′−′′
′−′−′′
′−′−′′
′−′−′′
′−′−′′
′−′−′′
′−′−′′
′−′−′′

4

4

3

3

2

2

1

1

32

31

23

22

21

13

12

11

444444

444444

333333

333333

222222

222222

111111

111111

    

1000
0001
1000
0001
1000
0001
1000
0001

y
x
y
x
y
x
y
x

a
a
a
a
a
a
a
a

yyyxyx
yyxxyx
yyyxyx
yyxxyx
yyyxyx
yyxxyx
yyyxyx
yyxxyx

                                                (2) 

 
where a33 = 1.  
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Figure 2: Square ABCD is Transformed to a Quadrilateral A'B'C'D', and Its Inverse Transformation 

 
To solve Eq. (2), it needs four image point pairs from the corresponding images. Finding this 
quadruplet is a typical and hard problem in computer vision. There are many methods to find 
image point pairs from two images. But none of them is reliable. Especially in this work, the 
cameras are heterogeneous, their optical characteristics are different, and image formats are 
different (that is, image qualities are different). It is very difficult to find this quadruplet 
automatically. This work employs the edges and edge corners as the landmarks. The quadruplet 
is determined by selecting the corresponding landmarks manually. This approach is applicable 
because it is needed only once at the beginning of the processing. The landmarks in a video 
stream can be tracked automatically in the same video stream. Figures 3 (a), (b), and (c) show the 
input images from camera 6, 8, and 7, respectively. The landmark candidates are defined as the 
intersection of two lines, and are marked by blue dots in Figures 3 (d), (e), and (f), where the 
lines are detected by Hough transform. The landmark physical positions and the landmark 
perimeter size can be obtained from Google earth map. Figure 4 shows the 6 landmarks 
numbered from 1 to 6 (the red lines are auxiliary to help understanding the definition of 
landmarks). Distance between landmark 1 and 2, landmark 1 and 5 is 19.11m and 29.25m, 
respectively, the width of this region is 5.0m, which are measured from Google earth map. The 
quadruplet selection from these candidates in Figures 3 (d), (e), and (f), can be {0, 2, 3, 1}, {2, 
12, 9, 0} and {25, 29, 23, 19}, or {4, 2, 3, 5}, {6, 12, 9, 4}, and {14, 29, 23, 13}, or {0, 4, 5, 1}, 
{2, 6, 4, 0}, and {14, 13, 19, 25}, from camera 6, 8, and 7, respectively. The area circled by the 
landmarks are called landmark region. Figures 5 (a), (b), and (c) show the rectification results for 
image in Figures 3 (a), (b), and (c), respectively. 
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Figure 3: (a), (b), and (c) Images from the Optical Camera 6, 8, and IR Camera 7. The Size of Optical Images 

is 640×480, and IR Image is 320×240. (d), (e), and (f) Landmark Candidates Detected from the 
Corresponding Input Image 
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Figure 4: Physical Positions of Landmarks and Length and Width of the Landmark Region from Google 

Earth Map. Distances between Landmark 1 and 2, Landmark 1 and 5 are 19.11m and 29.25m, Respectively, 
the Width of this Region is 5.0m, which are Measured from Google Earth Map 
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Figure 5: (a), (b), and (c) Rectification Results (no Interpolation) for Input Image in Figure 3 (a), (b), and (c), 

Respectively. (d), (e), and (f) Interpolation Results 
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3.1.2 Image Interpolation 
 
When an image in transformed by a transformation model, there will always be a difference 
between the input and transformed images. This difference is called the residual (or error). The 
residuals in Figures 3 (d), (e), and (f) are the black dots in the image region. The image data at 
residual points can be generated by employing image interpolation techniques. There are many 
image interpolation methods [19]. The method used in this work is simple and robust, which is 
described as follows. 
 
(i) For an image line, search from left to right. Mark the first point where image data is non-zero 

as m1. 
(ii) Next, search the point where the image data first becomes zero, and mark the point right 

before this point as m2. 
(iii)Then, search the point where the image data first becomes non-zero again, and mark this 

point as m3. For all points between m2 and m3, set their image value by using the average of 
image value at m2 and m3. 

(iv) Repeat above for all image lines. 
(v) Repeat (i) to (iv) for R-, G-, and B-component for whole image.  
       
The image interpolation results for the rectified image in Figures 5 (a), (b), and (c) are shown in 
(d), (e), and (f), respectively. 
 
3.1.3 Image Fusion 
 
The successful fusion of images acquired from different modalities or instruments is of great 
importance in many applications, such as medical imaging, microscopic imaging, remote sensing, 
computer vision, and robotics. Image fusion can be defined as the process by which several 
images or some of their features are combined together to form a single image. Image fusion can 
be performed at four different levels of the information representation, which are signal, pixel, 
feature, and symbolic levels. Several image fusion techniques have been reported in literature [7] 
[8] [9] [10] [11] [12]. As related in Section 2, DWT-based methods have some advantages over 
other methods; our fusion algorithm employs DWT based method. In DWT-based image fusion 
schemes the wavelet transforms W of the two registered input images I1(m,n) and I2(m,n) are 
computed and these transforms are combined using some kind of fusion rule φ. Then, the inverse 
wavelet transform W-1 is computed and the fused image I(m,n) is reconstructed, that is,   
 

I(m,n) = W-1(φ (W(I1(m,n)), W(I2(m,n))))                                                           (3) 
 

Among Harr wavelets, Gabor wavelets, and Daubechies wavelets, our approach employs 
Daubechies wavelets [13] [14]. Let us consider the input image f(m,n) as the scaling coefficient, 

0
,nms , at scale 0,  then 2-D DWT at scale j is denoted by, 
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nms + } denote DWT subbands of i-th image,  the fusion 
rule φ in Eq. (3) can be rewritten as  
 

waveletwavelet II ,22,11 κκ +                                                (6) 
 

where iwaveleti BI ∈,  (i = 1, 2), and κ1 and κ2 are weighting coefficients. By tuning κ1 and κ2, DWT 
based fusion can emphasize or depress some directional components in input images I1(m,n) or 
I2(m,n). In comparison, the fusion that directly employs the input image I1(m,n) and I2(m,n) is 
given by linear conjugation as, 
 

),(),(),( 2211 nmInmInmI κκ +=                     (7) 
 

in which there is no way to emphasize or depress some directional components included in 
I1(m,n) or I2(m,n). Figure 6 shows image fusion result for the interpolated image in Figures 5 (d), 
(e), and (f).    
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Figure 6: Image Fusion Result for the Interpolated Image in Figure 5 (d), (e), and (f) 

 
       
3.1.4 Moving Target Detection 
 
The targets in our system are the moving vehicles or pedestrians. The frame differencing and 
adaptive background subtraction are popular techniques for target detection. Because the 
cameras in our system are mounted on the top of the building wall, and to monitor large area, 
they are usually not zoomed up. This means that the movement of tree leaves and other small 
objects are relative small in comparison with the vehicles or pedestrians. Under this assumption, 
the frame differencing is fast and effective even in outdoor environment. However, the signal-to-
noise ratio in frame difference is low, and it is difficult to extract the target directly from the 
frame difference. Here, an enhancement processing is needed. Our previous work in [15] 
employed the dynamic Gabor filter to enhance the frame difference images for the video streams 
generated from the moving platform, in which the optical flows are used to determine the 
orientation of the Gabor filter. In this work we introduce the integrated Gabor filter to generate 
the mask image for target extraction, because the cameras are considered as the stationary 
camera in the current system.  
  The integrated Gabor filter is defined as follows. A Gabor wavelet is defined as, 
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where z = (x, y) is the point with the horizontal coordinate x and the vertical coordinate y. The 
parameters μ  and ν define the orientation and scale of the Gabor kernel,   ⋅  denotes the norm 
operator, and σ  is related to the standard derivation of the Gaussian window in the kernel and 
determines the ratio of the Gaussian window width to the wavelength. The wave vector  νμ ,k  is 
defined as follows  
 

μφ
ννμ

iekk =,                                                         (9) 
 

where  ν
ν fkk max=  and 8πμφμ = , maxk  is the maximum frequency, and νf  is the spatial 

frequency between kernels in frequency domain. The integrated Gabor filter is given by, 
 

∫ ∗=
μ

νμψ ),()(, nmIzImask                                            (10) 

 
where μ  is the orientation of the Gabor filter, maxk , σ , f, and ν  are fixed at 2/π , π2 , 2 , and 3, 
respectively. The target detection results are shown in the following section. 
 
3.2 Matching-Based Algorithm Description 
 
This work shows the fusion of images generated by an optical camera and an IR camera mounted 
on a building, and the target detection from the fused images. Figure 7 shows the samples of an 
optical image and an IR image.  
 

 
Figure 7: Two Different Images. (a) 640×480 Optical Image; (b) 320×240 IR Image 
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To clarify the fusion problem, we can summarize the facts and the assumptions related to the 
algorithm as: 

• Everything including background in the optical camera is moving since we moved the 
camera when gathering the data. 

• The optical image is color image, and IR image is grayscale image but recorded as 
pseudo color image, i.e., IR signature is recorded to R-, G-, and B-channels. The 
resolution is different (640×480 for optical image and 320×240 for IR image), and the 
ratio of width to height is different; 

• There are some region overlaps; however, those regions are unknown; 
• There are multiple targets in images, and the number of targets may change (exit or 

reenter the field of view of a camera). 
• The cameras are very close to ground so it is impossible to use simple 2D based 

algorithms like Sheikh et.al used. 
• In 3D environment the occlusions play more role than in 2D environments. 
• The cameras, we used were uncelebrated, so we searched for robust algorithms to 

struggle with this problem also. 
 
To address these problems, we designed a silhouette-based image fusion and target 

detection algorithm. The entire processing flow is shown in Figure 8. This algorithm consists of 
image transform, image registration, image fusion, and target detection. This research doesn’t 
assume that multiple cameras are mounted on the same helicopter or an unmanned aerial vehicle 
(UAV) or the same building. Therefore, it is only necessary to perform the image registration 
every time using certain number of image sequences to determine a relative motion relation 
between the optical and IR cameras. The following explains these three components in detail. 

Simply the algorithm takes one optical image taken by a moving optical camera and one 
IR image taken by a static camera. The motion template algorithm needs static images to 
perform, so we compensated the motion in the optical image by using the feature point 
extraction, optical flow detection, global parametric motion model estimation, motion detection 
and compensating this motion. This motion template algorithm works very robust and creates 
silhouettes for the moving objects both in IR and optical images. Than the silhouettes of the IR 
image is exposed to many perspective transformation, the characteristics of which are optimized 
by Genetic Algorithms (GA). All these transformed images are fused by optical image to find the 
best matching one. After the matching, the real images fused and the objects are tracked. 
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Figure 8: Process Flow of the Entire Algorithm 

 
 

3.2.1 Motion Estimation and Compensation 
 
In order to work with the motion templates algorithm, we need to compensate the motion. The 
motion compensation contains the feature point extraction, optical flow detection, global 
parametric motion model estimation, and motion compensation. 

We have used Shi and Tomasi’s algorithm for feature point extraction. We have used 
Lucas-Kanade optical flow in a pyramid for moving feature point detection and finally affine 
transform the image to compensate the motion. 

 
3.2.2 Motion Templates Algorithm 
 
With the introduction of inexpensive/powerful hardware and increasing interest in wireless 
interfaces, interactive environments, tracking/surveillance systems and entertainment domains, 
computer vision has focused on understanding and recognizing action more; and various 
approaches, that attempt the full three-dimensional recognition of motion, have grown at an 
increasing rate.  
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Bobick and Davis [20, 21] in MIT Media Lab invented an effective way of tracking 
motion. They started with a solution to recognize action in extremely blurred images, which 
includes the idea of recognizing action from the motion itself, as opposed to constructing three-
dimensional images first [21]. Specifically their recognition theory is based on first describing 
where the motion is in the spatial pattern and then describing how it is moving. Furthermore, 
they developed this approach into a novel representation and recognition technique for 
identifying actions which is based on Temporal Templates and their dynamic matching in time 
[22]. Specifically their approach is based on:   

The binary representation of the localization of the motion has occurred (a motion-energy 
image (MEI) and motion-history images (MHI) which are a scalar-valued image, the intensity of 
which is a function of motion history. In our algorithm we used image silhouetted to represent 
patterns of moving objects. When a new frame comes, the existing silhouettes are decreased in 
value subject to a threshold value of 30 and the new silhouette is overlaid at maximal value. This 
layered motion image has the advantage that a range of times from frame to frame to several 
seconds may be encoded in a single image. One of the novelties of our research appears here. We 
are not only taking the path of the moving objects [23] or assuming the appearances of the model 
is invariant to 2-D rigid transformation and scaling [24] but also the appearance of the moving 
object as silhouettes. In Figure 9, the way to create the silhouettes is shown. As seen in Figure 
10, working in the silhouette-domain helps us to find the relationship between the images. In the 
next section, the way to find this relationship will be discussed. 

 

 
Figure 9: Forming Silhouettes 
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Figure 10: Forming Silhouettes from IR and Optical Images 
 
 

3.2.3 Genetic Algorithm and Perspective Transformations 
 
Perspective transformation is a method for computing the way in which a plane in three 
dimensions is perceived by a particular observer, who might not be looking straight on at that 
plane or simply perspective transformation produces perspective by viewing the 3-D space from 
an arbitrary eye point. In this section, we will explain how we perspective transform the IR 
silhouette so that it overlaps the optical image silhouette. There are two ways to find this 
transformation matrix.  
 

1) Find the parameters in the transformation matrix 
2) Find arrays of four points so we can independently control how the corners of a rectangle 

in IR silhouette data are mapped to optical silhouette. 
 

We have tried both of them. We couldn’t get control on the first one, because it is impossible to 
put constraints on a transformation matrix, so we couldn’t find a good transform matrix out of 
infinite number of matrices. On the other hand, the second choices enable us to limit the search 
space by simply introducing some constraints. The idea behind this transformation is show in 
Figure 11. 
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Figure 11: Selecting Points to Transform the IR Silhouette Data 

 
 
Randomly selected four points correspond to the corners of the IR silhouette image and all the 
transformation is done accordingly. This time there is finite number of choices (width*height)4. 
For example, there may be a case as shown in Figure 12. 
 

 
Figure 12: Undesired Points to Transform the IR Silhouette Data 
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One of the ways to put the points in order is using Graham Scan Algorithm. The Graham Scan, 
proposed by Ronald Graham (1972), is an efficient algorithm for planar convex hull. It basically 
computes the convex null of a given set of points on the plane with time complexity O(n log n).  

The algorithm works in three phases: First we find the point with the lowest y-coordinate, 
which is also called P, the pivot. Next, we sort the points in the order of increasing angle about 
the pivot with time complexity O(n log n), which is a general-purpose sorting algorithm. An 
additional point to draw attention is that it is not necessary to calculate actual angles the points 
make with x-axis and it is sufficient to calculate the cotangent of the angles. Next, for each of the 
points, we need to determine whether moving from two previous conditions to the present 
condition is a left turn or a right turn; which means that the interior points on the ray cannot be 
part of the convex hull and should be removed. This process continues as long as the last three 
points are right turn and the algorithm moves on to the next sorted point as soon as a left turn is 
necessary. In other words, we build the null by moving around the convex, adding edges when 
we make a left turn and back-tracking when we make a right turn. Finally, the process ends up 
with the starting point with a stack that contains the points on the convex null in 
counterclockwise order. By this way, we are sure that a case like the one shown in Figure 12 will 
not  happen. 

This algorithm works well but slows down the process. We have found another constraint 
which can be applied to our data but does not work as general as Graham Scan. We randomly 
select points from each quadrant as shown in Figure 13. 
 

 
Figure 13: Only One Point from Each Quadrant is Selected to Transform the IR Silhouette Data 

 
 
This is sufficient for the convexity of the points but necessary to be a good candidate for the 
transformation. So we used genetic algorithms to find one of the best solutions very fast, because 
it can be applied to solve a variety of optimization problems that are not well suited for standard 
optimization algorithms, including problems in which the objective function is discontinuous, 
non-differentiable, stochastic, or highly nonlinear. 
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The objective or the performance criteria is to maximize the number of overlapping pixel 
between the transformed IR silhouette image and optical silhouette image. One of the important 
issues is that; sometimes only counting the overlapping pixels is not enough, because the 
transformation can put IR silhouette image into an anomaly magnified form. So the fitness 
function or the objective criteria is set to number of overlapping pixel / number of nonzero pixels 
in the transformed IR silhouette image.  In the population stage, 100 members (4 point arrays) 
are produced by assigning four points randomly to them. In the mate stage, the best members 
randomly interchange the points and create new members. Iteration number is 8. in the mutation 
stage, one of the points of the members changes randomly. The process is shown in Figure 14. 

 

 
Figure 14: GA Optimization to Find the Best Overlapping Transform of IR Silhouette Data to the Optical 

Silhouette Data 

 
 

3.2.4 Fusion and Object Detection 
 
The member which has the highest fitness value is taken out of the population and its 
transformation is applied to the IR silhouette image. The resulting image is then overlapped onto 
the optical image. The overlapping points are the points that belong to the same moving object. 
The procedure is shown in Figure 15. 
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Figure 15: Transformation and Fusing Process 

 
 
The red circles are showing the objects detected from the optical image silhouette and the green 
circles are showing the objects detected from the IR image silhouette. The yellow pixels are the 
overlapping pixels between the optical silhouette and transformed IR silhouette. 
 
3.2.5 Graphic processing Unit (GPU) Implementation of the Algorithm 
 
Real-time data acquisition and processing, which are highly concurrent and distributed, require a 
considerable amount of computing time and power. This computing time can be reduced by 
distributing a process over several processors, or the computing power can be distributed among 
the tasks according to their priorities by taking the advantage of multi-processor hardware 
architectures such as GPU. GPUs are dedicated graphics rendering devices for computers, cheap 
enough to be affordable by everyone, powerful enough to be able to replace clusters of tens of 
modern computers, very efficient at manipulating and displaying computer graphics. Their 
highly parallel hardware architecture makes them more effective than general-purpose central 
processing units (CPUs) for a range of complex algorithms such as image or video processes. 



21 
 

Processes like real-time computer vision algorithms for detection, identification, and 
tracking of moving targets in video streams can fully benefit from GPU-based hardware and 
programming models, thus taking advantage of additional features such as the availability of 
parallel, fast and accurate functions or instruction sets, as well as the compact size and relatively 
low cost of these units. 

Although much progress has been made in the parallel programming over the last several 
decades, the study of implementing these parallel algorithms to real-time computer vision 
algorithms is still a wide open area of research. This is not due to a lack of first-rate research by 
the engineering community, but instead it reflects the complexity of the problem. In order to 
benefit from the GPUs and overcome these problems, we must go beyond simply "porting" an 
existing algorithm to the GPUs, which will make us face a much higher bar or look for some 
novel approaches. 

We have implemented our algorithm to the GPU. The transformation part takes the most 
of the processing time, so we decided to implement transformation part into the GPU and the 
other parts implemented in CPU domain. Many threads are created and performed action and 
than the output were written to the CPU. It took more than we expected. For a GA optimization 
of 100 population and 8 iterations, it took four times more than CPU does. The main issue 
behind is that the device-CPU communication speed. It takes a lot of time for CPU and GPU to 
communicate each other. The huge amount of the processing time goes to this communication. 
The process is shown in Figure 16. 

 

 
Figure 16: CPU-GPU Communication and Parallel Processing 
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4.  RESULTS AND DISCUSSIONS 
  
The entire algorithm is implemented by using MS-Visual C++ 6.0 and Intel OpenCV. All 
experiments are performed on a Windows Vista computer mounted with a 2.33 GHz Intel Core 2 
CPU and 2GB RAM. The input optical images from Camera 1, 6, and 8 are all 640×480 color 
images, and the input IR image from Camera-7 is 320×240 dummy color. The discrete value for 
μ  in Eq. (10) is set at 0, 4/π , 2/π , and 4/3π . The quadruplet of the landmarks for rectification 
is selected from the intersection candidates, manually. The landmark region size is determined 
by using the Google earth map.  
  In the first experiment, the landmark region size is a 12m×6m rectangle. This rectangle is 
located in front of Camera-1, and about 20m away from the building wall. Camera 7 and 6 is 
about 29m and 51m away from this rectangle, respectively. Figures 5 (a), (b), and (c) show the 
input image from camera 1, 7, and 6, respectively. 
 
4.1 Experiment-1 
 
The first experiment employed three stationary cameras – two optical cameras (camera 1 and 
camera 6) and one IR camera (camera 7). The landmark region size is a 12m×6m rectangle. This 
rectangle is located in front of camera 1, and about 20m away from the building wall. Camera 7 
and 6 is about 29m and 51m away from this rectangle, respectively. Figures 17 (a), (b), and (c) 
show the input image from camera 1, 7, and 6, respectively, and (d), (e), and (f) the rectified 
images, correspondingly.  
    The rectified images are overlapped to do image fusion. Because all cameras are top-
down cameras, the images from these cameras are largely distorted. The fusion of the rectified 
image will generate blocking effects at the boundary areas. To reduce these blocking effects, the 
rectified images are further divided into subimages to perform image fusion. Details are as 
follows. 
  For two rectified input image, jI~  and kI~  (j, k = camera 1, 7, 8, or 6), the subimages at (m, 
n), ),(~

, nmI subj jI~∈ and ),(~
, nmI subk kI~∈ , are fused in the following way. 

(i) If ∑ ),(~
, nmI subj =0, and ∑ ),(~

, nmI subk =0, the fused image is also zero; 
(ii) If ∑ ),(~

, nmI subj ≠ 0, and ∑ ),(~
, nmI subk = 0, ),(~

, nmI subj  is considered as the fused image; 
(iii)If ∑ ),(~

, nmI subj =0, and ∑ ),(~
, nmI subk ≠ 0, ),(~

, nmI subk  is considered as the fused image; 
(iv) If ∑ ),(~

, nmI subj ≠ 0, and ∑ ),(~
, nmI subk ≠ 0, the fused image is generated according to Eq. 

(3) or Eq. (7). 
Figure 18 (a) shows the fused image for rectified image in Figures 17 (d) and (e) by using 

DWT based on 4×4 sub-image; (b) the fused image for rectified image in Figures 17 (d) and (e) 
by using DWT based on 8×8 sub-image; (c) Fused image for rectified image in Figures 17 (d) 
and (e) by using the linear conjugation based on 2×2 sub-image; (d) the fused image for rectified 
image in Figures 17 (e) and (f) by using DWT based on 4×4 sub-image; (e) the fused image for 
rectified image in Figures 17 (e) and (f) by using DWT based on 8×8 sub-image; (f) the fused 
image for rectified image in Figures 17 (e) and (f) by using the linear conjugation based on 2×2 
sub-image, respectively. In all experiments, κ1 and κ2 are both set at 0.5. 
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The moving targets are detected by using the fused image. Figure 19 shows the target 
detection result at frame 0, 20, 30, and 40, where the purple ellipse shows the convex hull of the 
target, and green box the circumscribed rectangle. The processing time for image rectification, 
fusion, and target detection is 1498 ms, 2699 ms for DWT based fusion (718 ms for weighted-
add based fusion), and 8456 ms, respectively. 

 

 
Figure 17: (a), (b), and (c)  Input Image from Camera 1, 7, and 6,  Respectively; (d), (e), and (f)  Rectified 

Image for Input Image in (a), (b), and (c), Correspondingly 
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Figure 18: (a) Fused Image for Rectified Image in Fig. 7 (d) and (e) by using DWT based on 4×4 Sub-image; 
(b) Fused Image for Rectified Image in Fig. 7 (d) and (e) by using DWT based on 8×8 sub-image; (c) Fused 

Image for Rectified image in Fig. 7 (d) and (e) by Using the Linear Conjugation based on 2×2 Sub-image; (d) 
Fused Image for Rectified Image in Fig. 7 (e) and (f) by using DWT based on 4×4 Sub-image; (e) Fused Image 
for Rectified Image in Fig. 7 (e) and (f) by using DWT based on 8×8 Sub-image; (f) Fused Image for Rectified 

Image in Fig. 7 (e) and (f) by Using the Linear Conjugation based on 2×2 Sub-image 
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Figure 19: (a), (b), (c), and (d) Targets Detected at Frame 0, 20, 30, and 40, Respectively 

 
 
4.2 Experiment-2 
 
The second experiment employed camera 6, 7, and 8, where camera 8 is a hand-held camera. The 
landmark region size is a 18.96×5.04m rectangle. This rectangle is located in front of camera 8 
and 6, and about 20m away from the building wall. Camera 7 is about 39m away from this 
rectangle, respectively. In this experiment, the processing tasks become more complicated that 
those in the first experiment. In comparison to the target detection by employing the fused image 
in previous experiment, this experiment conducts the target detection from the individual video 
from the independent camera. The processing tasks in this experiment are summarized as 
follows.  
 

(i) Processing tasks for video from camera 6. They contain the projective transformation 
matrix estimation, image interpolation, image fusion, and moving target detection.  

(ii) Processing tasks for video from camera 7. They contain the image resampling (because 
the image size from camera 7 is 320×240 but not 640×480 as those from camera 6 and 8), 
projective transformation matrix estimation, image interpolation, and image fusion.  

(iii)Processing tasks for video from camera 8. They contain the landmark tracking, the 
frame-to-frame transformation matrix estimation, projective transformation matrix 
estimation, image interpolation, and image fusion. Because the camera 8 is a pan-tilt 
hand-held camera, it is necessary to track the landmarks so that the consecutive image 
frame can be registered by using the first image frame as the reference, and then the 
consecutive image frames can be fused with the images from camera 6 and 8. The 
registration of the image from camera 8 can be performed by using the affine 
transformation or projective transformation. Currently because this camera does not 
contain the rotation, and the moving area is relatively small, the translation 
transformation is employed. 
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Figure 20: (a), (b), and (c) Initial Image of Three Video sequences from Camera 6, 8, and 7, respectively, 

where Blue Dots are Landmark Candidates; (d) Quadruplet Selection and Landmark Dimension Selection 
Interface 

 
 
  Figures 20 (a), (b), and (c) shows the initial image of three video sequence from camera 
6, 8, and 7,  respectively, where blue dots are land mark candidates; and (d) quadruplet selection 
and landmark dimension selection interface. In this case, quadruplet {2, 4, 5, 3}, {4, 8, 7, 3}, and 
{8, 52, 60, 9} from the first frame of camera 6, 8, and 7, respectively, are selected as the 
landmarks for image rectification. Figure 21 shows the landmark images extracted from the first 
image of camera 8. These landmarks need to be tracked in the consecutive frames from camera 
8. The tracking is based on the template matching technique, and the correlation coefficient is 
used as the template matching measure. 
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Figure 21: Landmark Images Extracted from the Initial Image Frame From Camera 8, in which the 

Landmark Candidates 4, 8, 7, and 3 are Selected as the Landmark 

 
  
  Figure 22 shows the image fusion and target detection result at frame 57. The top-left 
image is the video from camera 6, top-right from camera 7, bottom-left from camera 8, and the 
bottom-right the fused image which is resized to 640x480. Two moving targets are detected as 
marked by the purple ellipses, where the green ellipses represent the cluster of the blobs in mask 
image. 

Figure 23 shows the result of the congestion detection at frame 79, which is circled by a 
white rectangle (see top-left and bottom-right images). 

Figure 24 shows the end of the congestion at frame 122, and two moving targets are 
detected separately (see top-left and bottom-right images). 

Figure 25 shows a target disappeared and a new target is detected at frame 202 (see left-top 
and bottom-right images). 

Figure 26 shows the image fusion results for videos from camera 6, 8, and 7; (a) shows the 
fusion result without interpolation, and (b) with Interpolation. 
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Figure 22: Image Fusion and Target Detection Result at Frame 57. Top-Left Image Is the Video From 

Camera 6, Top-Right From Camera 7, Bottom-Left From Camera 8, And Bottom-Right The Fused Image 
which as Resized To 640x480. Two Moving Targets are Detected as Marked by the Purple Ellipses, where the 

Green Ellipses Represent the Cluster of the Blobs in Mask Image 
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Figure 23: Congestion Detection at frame 79, which is circled by a White Rectangle (Top-Left and Bottom-

Right Images) 
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Figure 24: Congestion Finished at Frame 122, and Two Moving Targets are Detected Separately 
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Figure 25: Disappearing of a Target and the Detection of a New Target at Frame 202 

 
 

 
Figure 26: Image Fusion Results for Videos from Camera 6, 8, and 7.  (a) No interpolation. (b) With 

Interpolation 
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4.3 Experiment-3 
 
The third experiment employed two hand-held cameras which are held by two persons at the roof 
of 7-story building. The cameras are set 20-meter apart, and are swept left and right to mimic the 
camera mounted on UAV. In the following, we call them pseudo UAV cameras. 
 The experiments results are shown in Figure 27 and Figure 28. In this experiment, the lane 
line and road edge are considered as the land marks. The entire processing contains land mark 
detection, land mark matching, and image fusion. In both Figure 27 and Figure 28, (a) and (b) 
shows the input image from pseudo UAV camera 1 and 2, respectively; (c) and (d) shows the 
detected land marks from the input image in (a) and (b), correspondingly; and (e) shows the 
fusion result. 
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Figure 27: (a) and (b) Input Image from Pseudo UAV Camera 1 and 2, Respectively; (c) and (d) Detected 

Landmarks from the Input Image in (a) and (b), Correspondingly; (e) Fusion Result 
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Figure 28: (a) and (b) Input Image from Pseudo UAV Camera 1 and 2, Respectively; (c) and (d) Detected 

Landmarks from the Input Image in (a) and (b), Correspondingly; (e) Fusion Result for Images in (a) and (b) 
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5. CONCLUSIONS  
 
This report presented a new method for the fusion of images from heterogeneous top-down 
cameras. It consists of image rectification, interpolation, and fusion. The image rectification is 
based on projective transformation, and the image fusion is based on DWT and linear 
conjugation. It further introduced the integrated Gabor filter for the moving target detection from 
the fused images. The experimental results verified that the proposed method is valid and 
effective.  
 From Figure 5, we can get the following conclusions. Comparing Figure 5 (d) and (e) 
with (f), for the meaningful overlapped areas (in which the image signal from both input images 
is not all zeros), DWT-based fusion is smoother than the linear-conjugation based fusion. Same 
conclusion can be obtained by comparing (g) and (h) with (i). However, the blocking effects of 
DWT-based fusion are larger than linear-conjugation based method. This is because that smallest 
subimage size in DWT-based fusion is 2×2, but it can be 1×1, i.e., pixel by pixel fusion for the 
linear conjugation based method. The processing time for DWT based fusion is approximate four 
times higher than that of the processing time for the linear conjugation based fusion. This is 
because that DWT-based method is much more complicated than the linear-conjugation based 
method.  

The second experiment employed the image interpolation to improve the quality of the 
fused image. Comparing Figures 26 (a) and (b), it is clear that the fused result in (b) is better than 
that in (a).  

 
5.1 Processing Time 
 
The average processing time for target detection in the first experiment is 8456 ms. This is 
because that the target detection employs the fused image and the fuse image size is four times of 
the input image size, in the first experiment. In the second experiment, the processing time is 
reduced to 3613 ms. This is because the target detector employed the individual input image.  
The processing in the third experiment contains the landmark detection, landmark matching and 
image fusion. The average processing time is 9484 ms. The major processing in this experiment 
is the time for landmark matching. The landmark size is 350×30, and the landmark matching 
contains ration, scaling and template matching. This processing is repeated in the range of 
φ∈{φmin, φmax] and s∈[smin, smax], where φ is the rotation angle, and s scale. However, this time 
can be reduced by reducing the size of the landmark. 
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5.2 Image Fusion Error 
 
From Figure 6 we can see the landmark region areas are well fused, but the perimeter area of 
each images are not well fused. There are several reasons to cause this error. The first reason is 
that three cameras are far apart each other, and they are top-down cameras. The second is that 
these three cameras are different type camera, and their lenses characteristics are different. The 
third is that the ground is not flat. This type error is also seen in Figure 27 (e) and Figure 28 (e). 
In Figure 27 (e), the two images from two pseudo UAV cameras are well fused. However, the 
electric poles in two images are not well fused (see top-right area). This is because the electric 
pole is not flat to the road surface, and two pseudo UAV cameras are far apart each other. 
Similar error also exists in Figure 28 (e). This error is unavoidable if the camera lenses are 
different. But we can conclude that the closer the cameras are, the smaller the error is, and the 
flatter the terrain is, the smaller the error is. And this error can be greatly reduced by using 3-D 
camera model. 
  One of the proposed methods employed the landmark for image fusion. Landmark 
detection and matching takes long time. However this processing is required at the beginning of 
the processing. In the consecutive frames, this task becomes the tracking of the landmark. 
Therefore the algorithm can be greatly speeded up. It will be valid algorithm in the real-time 
application. 
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7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
 
CPU Central Processing Unit 

 
DWT Discrete Wavelet Transform 

 
EO Electro-Optical 

 
GA Genetic Algorithms 

 
GPU Graphics Processing Unit 

 
IR   Infrared 

 
MEI   Motion Energy Image 

 
MHI Motion History Image 

 
UAV Unmanned Aerial Vehicle 

 
 
 
 
 




